Hadamard Matrices, Baumert-Hall Units, Four-Symbol Sequences, Pulse Compression, and Surface Wave Encodings

نویسنده

  • Richard J. Turyn
چکیده

If a Williamson matrix of order 4w exists and a special type of design, a set of Baumert-Hall units of order 4t, exists, then there exists a Hadamard matrix of order 4tw. A number of special Baumert-Hall sets of units, including an infinite class, are constructed here; these give the densest known classes of Hadamard matrices. The constructions relate to various topics such as pulse compression and image encodings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex Golay sequences: structure and applications

Complex Golay sequences were introduced in 1992 to generalize constructions for Hadamard matrices using Golay sequences. (In the last section of this paper we describe some independent earlier work on quadriphase pairs–equivalent objects used in the setting of signal processing.) Since then we have constructed some new in7nite classes of these sequences and learned some facts about their struct...

متن کامل

Multicarrier orthogonal CDMA signals for quasi-synchronous communication systems

We propose a multi-carrier orthogonal CDMA signaling scheme for a multiple-access communication system, such as the reverse channel of a cellular network, as an alternative to the multiuser interference cancellation approach. The average variance of cross-correlations between sequences is used as a measure for sequence design. We search for sets of sequences that minimize the probability of sym...

متن کامل

A Hadamard matrix of order 428 ∗

Four Turyn type sequences of lengths 36, 36, 36, 35 are found by a computer search. These sequences give new base sequences of lengths 71, 71, 36, 36 and are used to generate a number of new T -sequences. The first order of many new Hadamard matrices constructible using these new T -sequences is 428.

متن کامل

Modular Sequences and Modular Hadamard Matrices

For every n divisible by 4, we construct a square matrix H of size n, with coeecients 1, such that H H t nI mod 32. This solves the 32-modular version of the classical Hadamard conjecture. We also determine the set of lengths of 16-modular Golay sequences. 0. Introduction Hadamard matrices can be constructed from various binary sequences, either from Golay complementary sequences, or Williamson...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 16  شماره 

صفحات  -

تاریخ انتشار 1974